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Abstract 

It is pointed out that the 'direct methods' of phase 
determination for small-structure crystallography do 
not have immediate applicability to macromolecular 
structures. The term 'direct methods in macromolec- 
ular crystallography' is suggested to categorize a spec- 
trum of approaches to macromolecular structure 
determination in which the analyses are characterized 
by the use of two-phase and higher-order-phase 
invariants. The evaluation of the invariants is gen- 
erally obtained by the use of heavy-atom techniques. 
The results of a number of the more recent algebraic 
and probabilistic studies involving isomorphous 
replacement and anomalous dispersion thus become 
valid subjects for discussion here. These studies are 
described and suggestions are also presented concern- 
ing future applicability. Additional discussion con- 
cerns the special techniques of filtering, the use of 
non-crystallographic symmetry, some features of 
maximum entropy and attempts to apply phase-deter- 
mining formulas to the refinement of macromolecular 
structure. It is noted that, in addition to the continuing 
remarkable progress in macromolecular crystallogra- 
phy based on the traditional applications of isomor- 
phous replacement and anomalous dispersion, recent 
valuable advances have been made in the application 
of non-crystallographic symmetry, in particular, to 
virus structures and in applications of filtering. Good 
progress has also been reported in the application 
of exact linear algebra to multiple-wavelength 
anomalous-dispersion investigations of structures 
containing anomalous scatterers of only moderate 
scattering power. 

Introduction 

The term direct methods, when applied to small- 
molecule crystallography, has a fairly generally 
understood meaning. It developed from a 
methodology for the determination of the phases of 
scattered X-ray amplitudes. Direct methods implies 

* Editorial note: This invited paper is one of a series of  compre- 
hensive Lead Articles which the Editors invite from time to time 
on subjects considered to be timely for such treatment. 

the initiation of a process for phase determination 
that does not involve the introduction of previously 
known structural information. The absence of pre- 
viously known structural information distinguishes 
direct methods from Patterson methods since the 
latter are initially concerned with obtaining structural 
rather than phase information. Techniques that have 
been especially valuable in investigating the struc- 
tures of macromolecules are isomorphous replace- 
ment and anomalous dispersion. They depend upon 
the presence of heavy atoms in the structures of 
interest and have been distinguished from the usual 
direct methods not only by their own special features, 
but also by the fact that in applications to date struc- 
tural information concerning the locations and 
occupancies of the heavy atoms has been required 
before the determination of the phases could proceed. 

In recent investigations concerning the evaluation 
of triplet phase invariants from isomorphous replace- 
ment data, it was found that such invariants may be 
evaluated without the use of any structural informa- 
tion including the chemical identification of the 
replacement atoms. The same is true for triplet phase 
invariants from anomalous-dispersion data, namely 
that atomic location is not required. In this case, 
however, information concerning the chemical iden- 
tification and the proportion of different types of 
anomalous scatterers is needed. With values for triplet 
phase invariants, a parallel exists with direct methods 
for small molecules, since such analyses are also 
based on estimated values for triplet phase invariants. 
The question arises concerning whether the triplet 
phase invariants for macromolecules, evaluated from 
the special heavy-atom techniques, can lead to 
reliable and efficient procedures for phase determina- 
tion, or whether there are more effective ways to use 
the same data. Some opinions on the latter question 
will be forthcoming. 

If we attempt to apply in a fairly strict fashion the 
concept of direct methods to macromolecules, as it 
applies to small molecules, then we are left with little 
to discuss. It may be desirable, however, to have an 
umbrella term such as direct methods in 
macromolecular crystallography to categorize a spec- 
trum of approaches to macromolecular structure 
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determination in which the analyses are characterized 
by the use of two-phase and higher-order-phase 
invariants even though the analyses may be facilitated 
in part by other techniques that make use of the 
presence of heavy atoms. I suggest that we use this 
as our definition. It will permit us then to discuss a 
number of newer developments and some traditional 
ones under the title of this paper. 

Isomorphous replacement and anomalous disper- 
sion are complementary heavy-atom techniques that 
have played a most important role in macromolecular 
structure analysis by greatly facilitating phase deter- 
mination. They will be discussed separately for the 
most part, although the value of both techniques is 
usually enhanced when they are used in combination. 
The traditional widely used and well documented 
procedures for employing isomorphous replacement 
and anomalous dispersion will not be treated here. 
Rather, special or novel features will be highlighted. 

lsomorphous replacement 
Crystals that have the same unit-cell geometry but 
differ in chemical composition are called iso- 
morphous. Isomorphous replacement may be 
described by 

Fe+x + F v - x  = FR+y (1) 

where Fe+x is the structure factor for a structure 
consisting of invariant atoms R and replaceable 
atoms X, FR3y is a structure factor for a structure 
consisting of the same invariant atoms R and replace- 
able atoms Y and Fy_x is the structure factor for 
the configuration of the difference between atoms Y 
and X. In macromolecules, a heavy-atom moiety, Y, 
is usually added to a native structure, R, consisting 
of invariant atoms. This reduces (1) to F R + F y  = 

FR+y, which is often written 

Fp + FH = Fp. (2) 

with P, H and PH replacing R, Y and R + Y, respec- 
tively. 

Direct methods and the location of heavy atoms 

Small-molecule direct methods have been used to 
locate heavy atoms in isomorphous macromolecular 
crystals since the work of Steitz (1968). By this time 
there have been quite a few studies and applications. 
It is therefore appropriate to take the opportunity not 
only to describe the nature of such applications but 
also to characterize briefly the features of small- 
molecule direct methods. 

Traditionally, direct methods for small molecules 
are initiated with only a very small amount of phase 
information. This consists of some permitted 
specifications related to origin assignments and, when 
appropriate, the specification of enantiomorph or axis 

direction or both (Karle, 1988), and a few symbolic 
assignments or trial numerical values. Phase assign- 
ments are associated with large magnitudes of the 
structure factors. At times additional initial phase 
information is obtained from the use of special for- 
mulas. Phase relationships and probability measures 
are then applied to the initial phase information in 
order to extend and refine it. Simple phase-deter- 
mining formulas, such as the sum-of-angles formula, 

~h -"  ~0k + ~ h - k ,  

or a simple tangent formula, 

(3) 

tan ~h "- sin ( , k +  *h-k)/COS (*k+ ~h-k), (4) 

are employed in a stepwise fashion, in the initial 
stages of phase determination. The origin of these 
formulas is the determinantal inequality theory based 
on the non-negativity of the electron density distribu- 
tion in a crystal [(Karle & Hauptman, 1950); see e.g. 
inequality (34)]. The justification for the use of (3) 
and (4) derives from the inherent probabilistic impli- 
cations of the inequalities. Probabilistic investigations 
gave quantitative measure to the reliability of the 
phase-determining formulas (Hauptman & Karle, 
1953; Woolfson, 1954; Cochran, 1955). It has been 
shown in later years that when the predominant atoms 
are not too different in atomic number, the probability 
formulas for phase determination can be expressed 
in terms of the determinants that occur in the deter- 
minantal inequalities (Tsoucaris, 1970; Karle, 1971, 
1978). As a phase determination proceeds, the many 
indications for the value of the phase of a particular 
reflection are combined by use of a more general 
tangent formula [see (33)] (Karle & Hauptman, 1956). 
An alternative procedure involves the use of 
numerous sets of 40-50 phases that are given initial 
random values for further extension and refinement 
by use of the tangent formula (Yao Jia-xing, 1981). 
For structures containing up to about 50 atoms, a 
successful refinement often occurs within about 100 
starting sets. More complex structures can require 
many more starting sets. 

The application of direct methods to the determina- 
tion of the locations and occupancies of heavy atoms 
in isomorphous crystals is based on the presumption 
that the function 

 KFI =lIF,,.I-IF ll (s) 
is a sufficiently accurate representation of the struc- 
ture-factor magnitudes of the heavy atoms, where IF~.I 
is the magnitude of the structure factor for the native 
protein and I Fp.l is the magnitude of a corresponding 
structure factor for an isomorphous derivative. An 
analysis based on FpH = Fp + FH shows that IAIFII is 
equal to IF'.], the magnitude of the structure factor 
for the heavy atoms, when the Fp and FpH are among 
the larger magnitudes for a macromolecule and rep- 
resent centric reflections. For acentric reflections. (5) 
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is an approximation. In practice, errors in measuring 
diffraction intensities and deviations from isomorph- 
ism add to the inaccuracies in the use of the IAIFII. 
The inaccuracies appear to have been quite tolerable 
in a number of successful analyses that have been 
achieved with the use of the IAIFII as a source of 
normalized structure-factor magnitudes for the appli- 
cation of direct methods. 

Normalized structure-factor magnitudes, are 
formed from the IAIFhll, corrected for positional dis- 
order and scale, by means of 

N 

IAIF,,I (6) 
j = l  

where fjh is the atomic scattering factor for the j th  
atom in a unit cell coritaining N heavy atoms and e 
is a factor dependent upon the type of reflection and 
the space group (Stewart, Karle, Iwasaki & Ito, 1977). 
Direct methods can be expected to play an especially 
useful role when the occupation of numerous sites 
by heavy atoms would make the interpretation of 
Patterson maps rather difficult. 

Direct methods were used to evaluate phases of 
reflections associated with centrosymmetric projec- 
tions in the first application by Steitz (1968). The 
applications involved three derivatives of carboxy- 
peptidase A, one of which contained four heavy atoms 
per protein molecule (8 Hg atoms/unit cell). In struc- 
ture determinations of small molecules, chemical 
insights often play an important role in the selection 
of a correct structure among ambiguous alternatives. 
Generally, no such insights are available for choosing 
a correct arrangement for heavy atoms in a macro- 
molecule. Selection of the correct solutions for car- 
boxypeptidase A was made by comparing ErA maps 
with the use of protein phases determined by multiple 
isomorphous replacement. 

The locations of the heavy atoms in an isomorphous 
osmium derivative of yeast initiator transfer RNA 
were determined by Patterson and direct methods 
applied to centrosymmetric projections, followed by 
least-squares refinement, by Schevitz et al. (1972). 
Data at 6 A resolution were employed. The primary 
site was found to have an occupancy of 2/3, but 
efforts to establish subsidiary sites in projection were 
not successful. It was suggested that the use of three- 
dimensional data may improve the results. Sub- 
sequent investigations confirmed this view. 

Direct methods were used to evaluate the phases 
of difference coefficients for three-dimensional reflec- 
tions at 3.5 A resolution for three heavy-atom deriva- 
tives of the enzyme elastase by Neidle (1973). The 
metal atoms were located with good accuracy in two 
of the three derivatives and with somewhat less in 
the third. A study of one derivative at low resolution 
indicated that the methods may be applicable at 6 
resolution and even lower. This investigation demon- 

strated that three-dimensional data could play a use- 
ful role in the location of heavy atoms. 

Heavy-atom positions in numerous derivatives of 
yeast hexokinase were located by use of direct 
methods by Steitz, Fletterick & Hwang (1973) and by 
Anderson, Fletterick & Steitz (1974). All the deriva- 
tives had multiple heavy-atom binding sites. It was 
not possible to find the heavy-atom sites in all the 
derivatives from high-resolution projection maps 
alone. In the investigation by Anderson et al. (1974), 
use was made of three-dimensional difference 
coefficients. This resulted in the location of the four 
heavy atoms per asymmetric unit in a mersalyl deriva- 
tive with data at 7 A resolution. As a consequence of 
these studies, the authors suggested that low-resol- 
ution three-dimensional difference coefficients may 
be more effective than higher-resolution projection 
difference coefficients. 

In additional studies, Navia & Sigler (1974) 
obtained trial heavy-atom positions for isomorphous 
derivatives of concanavalin A and formylmethionine 
transfer RNA by direct methods applied to projection 
data. Three-dimensional sets of starting phases for 
use with the tangent formula were computed from 
the trial heavy-atom positions. The correct positions 
were determined from this application of the tangent 
formula. Wilson (1978) investigated the applicability 
of direct methods to the location of heavy atoms in 
isomorphous derivatives of four proteins and dis- 
cussed the relative values of various functions for 
selecting the best phase set from alternative sets 
obtained from use of the tangent formula. 

Westbrook, Piro & Sigler (1984) illustrated the use- 
fulness of direct methods when a large number of 
sites are occupied by heavy atoms in isomorphous 
derivatives. Two heavy-atom derivatives of zas-3 - 
ketosteroid isomerase were investigated, a KEPtC14 
derivative having 14 sites and a uranyl acetate deriva- 
tive having 11 sites. Not all sites were found from 
use of direct methods. The remaining ones were found 
by analysis of difference maps. This was a particularly 
complex problem because the unit cell is hexagonal 
(space group P6122) and contains four identical 
protomers in each of its 12 asymmetric units. 

Two-phase invariants in isomorphous replacement 

It readily follows from (2) that 

COS (~0hp -- ~ h H )  

= ( Fhpn 2--1Fhp 2_ Fht4]E)/21Fhp IFhn I (7) 

and 

cos (¢hPH -- ~0,H) 

= ( F h p .  2 -  Fhp2+lFhnl2)/2 Fhp, lFhn]. (8) 

The symbols P, H and PH have been defined in 
connection with (2). The added subscript h defines a 
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specific plane. Information concerning the positions 
of the heavy atoms permits the evaluation of the (~hH 
and ]Fh.I. The IFh~.l and [Fhe] are obtained from 
experimental measurements on the isomorphous crys- 
tals. When the right-hand sides of (7) and (8) have 
values in the vicinity of +1, q~he or Chert are approxi- 
mately equal to or rr away from eh , .  In these circum- 
stances and with the known values for q~hU, values 
for q~hP or ehPH can then be obtained. This has the 
potential for affording initial values for numerous ehP 
and q~heH. Test calculations (Karle, 1986) were per- 
formed with data for cytochrome c550.PtC14 z- (Tim- 
kovich & Dickerson, 1976) for the purpose of gaining 
some insight into the usefulness of (7) and (8). The 
calculations, summarized in Table 4 of the cited refer- 
ence, have shown that for average errors of about 
10% in the structure-factor magnitudes, at least half 
of the available data could be phased with an average 
error of less than 0.6 rad. This suggests that in this 
way the two-phase invariants could be a valuable 
source of initial phase values. 

Probability theory and triplet phase invariants for 
isomorphous replacement 

Probability distributions that can lead to evalu- 
ations of three-phase or triplet phase invariants when 
two crystals are related by an isomorphous replace- 
ment have been derived by Hauptman (1982a). The 
probabilisti'c theory expresses the joint probability 
distribution of six structure factors, three related to 
a phase triplet for one of the crystals and three addi- 
tional ones related to the corresponding triplet for 
the isomorphous mate. The joint distribution of the 
six structure factors gives rise to conditional distribu- 
tions for triplet phase invariants .(2 of the form 
P(O)  = ( I / K )  exp (A cos .O), on the assumption that 
the magnitudes of the six structure factors are known. 
The results are expressed in terms of A, ( n =  
0, 1, 2, 3), with the implication that when the An are 
large and positive certain triplet phase invariants have 
values close to zero and when the An are large and 
negative the appropriate triplet phase invariants have 
values close to 7r. The values of A, are expressed in 
terms of/3,  (n = 0, 1, 2, 3) among other quantities. In 
order to calculate values for the/3, ,  information con- 
cerning the number and occupancy factors of the 
heavy atoms is required. In the case that the latter 
information is not available, it may be possible to 
make an estimate of the /3, from the measured 
intensities. The latter possibility has not been 
explored. 

If, as is likely, it is not generally possible to deter- 
mine the number and occupancy of the heavy atoms 
without also locating their positions, two alternative 
circumstances prevail. If the required information is 
not available, the probability distribution cannot be 
applied as defined. On the other hand, if the heavy- 

atom structure is known, then, as will be described 
below, more accurate probability distributions 
become accessible. It is also then possible to obtain 
much initial phase information for the macro- 
molecular structure from (7) and (8). 

Test calculations of the probability theory were 
performed by Hauptman, Potter & Weeks (1982) on 
error-free diffraction data for cytochrome c550 from 
Paracoccus denitrificans and a single isomorphous 
PtC14- derivative which crystallized in space group 
P2~212~ (Timkovich & Dickerson, 1976). Estimates 
(0 or 7r) were made of triplet phase invariants and 
compared with known values. It was found that 
thousands of triplet phase invariants having values 
close to 0 or 77- could be evaluated with high reliability 
by use of the probability theory. 

Conditional probability distributions for triplet 
phase invariants have been obtained by Fortier, 
Weeks & Hauptman (1984) for the case of a native 
structure and two isomorphous derivatives in which 
the heavy replacement atoms for each derivative are 
located in different positions in the unit cell. The 
distributions for the triplet phase invariants, rep- 
resented by .Q, again have the form P( .Q)= 
( l / K )  exp (A cos .Q), where the parameters K and 
A are functions of the nine structure-factor magni- 
tudes that enter the analysis and the occupancy and 
chemical identification of the heavy-atom sites. As 
may be anticipated, a test calculation with cyto- 
chrome c550 shows that the triple of isomorphous 
structures affords more accurate estimates of the trip- 
let phase invariants than a pair of the same isomor- 
phous structures. 

Algebraic analysis and triplet phase invariants 

An algebraic analysis of triplet phase invariants for 
isomorphous crystals affords a number of insights 
that lead to a simple rule (Karle, 1983) for estimating 
the values (0 or 7r) of appropriate triplet phase 
invariants. In order to apply this rule, it is not 
necessary to know the chemical identity, nor the 
number or occupancy of the heavy atoms. In other 
words, no knowledge concerning the heavy atoms is 
required and, as will be seen, the evaluation can be 
made by inspection of the signs of the differences 
between appropriate structure-factor magnitudes. 

For two reflections labeled with h and k, we are 
concerned with the three phases forming a triplet 
invariant in the crystal of the native macromolecule, 
~0he, ~0ke and ~o(K+~)p, and the three phases forming 
a corresponding triplet invariant in the isomorphous 
substituted crystal, ChpH, ~0kpH and ~)(h+k)Pn. We 
therefore have eight different triplet phase invariants 
arising in the mathematics as sums of three phases 
composed of ~0hp or ~Ohp H plus ~0kp or ~Dkp H plus 
~O~+~)p or Ct~+i)PH. This is also true for the prob- 
abilistic approach. 
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By use of (2), it follows immediately that 

FhHFkHF(h+k)H 

= ( Fhmq -- Fhp)(Fkp. - Fkp)( F(~+~)p. - F(K+~)p). 

(9) 

For the larger values of fpH and Fp and the largest 
values of [[FpH[- IFpll, the phase of Fp, ~pp, will differ 
little in value from the phase of FpH, ~opH. It is then 
possible with good approximation to replace the eight 
triplet phase invariants associated with (9) with an 
average expression, (~h+ q~k+ q~+~), and (9) becomes 

ffhHFkHF(fi+fOH exp [i(~hH + ~/)kH + ~)(h+k)H)] 

-~( F,~.I- F.~ )(IFkp.I-IFk~ ) 
X ( F(fi+ft)pn - -  F(S+~)p ) 

x exp [i(~0h+ ~0k+ q~a+~,)]. (10) 

When the product of normalized structure factors 
associated with the product on the left of (9), for the 
rather simple heavy-atom structures occurring in 
macromolecules, is among the larger ones in magni- 
tude, the corresponding triplet phase invariant is close 
to zero and the left-hand side of (9) is essentially a 
real positive number. We can thus make the following 
interpretation when the triple product on the right- 
hand side of (10) has large differences: 

Rule, Riso: I f  the sign of  the product of  the magnitude 
differences on the right-hand side of  (10) is plus, the 
value of  the average invariant, ( ~on + ~o~, + ~o~+~>, is close 
to zero, and if the sign of  the product is minus, the value 
of  the average invariant is close to 7r. 

This, in effect, assigns the estimate to all eight triplet 
phase invariants contained in (9). As an alternative 
to the rule, the estimates of zero or 7r may be restricted 
to only the larger products of structure-factor magni- 
tudes among the eight triplet phase invariants. Calcu- 
lations indicate that this restriction would enhance 
the accuracy of the estimates to some small extent 
but may be relatively meaningless when errors in the 
data are taken into account. The restricted application 
of the estimates would also appear to make the use 
of the triplet invariants in phase evaluation, extension 
and refinement more difficult to apply. A calculation 
has been made (Karle, 1986, Table 3) of the average 
of the magnitudes of the discrepancies of sets of eight 
triplet phase invariants from their average values for 
2.5 A data from cytochrome c550 and a single isomor- 
phous PtC12- derivative (Timkovich & Dickerson, 
1976). The average of the magnitudes of the dis- 
crepancies for about 100 000 average triplet phase 
invariants was 21 °. Tests of the simple rule (Karle, 
1983), based on the magnitude differences on the 
right-hand side of (10), have given results of high 

reliability for both small structures and the protein 
cytochrome. 

Known heavy-atom structures, isomorphous replace- 
ment and triplet phase invariants 

The accuracy and applicability of the theory for 
triplet phase invariants are enhanced by a knowledge 
of the heavy-atom structure. This applies for both the 
probabilistic and algebraic approaches. The enhance- 
ment of applicability is manifested by the fact that 
knowledge of the heavy-atom structure permits the 
evaluation of the cosines of triplet phase invariants 
at any value in the interval - !  to +1 instead of merely 
in the vicinity of +1. Fortier, Moore & Fraser (1985) 
developed the conditional probability distributions 
for triplet phase invariants when the heavy-atom 
structure is known. An algebraic theory has also been 
described (Karle, 1983) and further investigated 
(Karle, 1986). Test calculations of the probability and 
algebraic formulas in the cited references illustrate 
the increase in accuracy that derives from having 
structural information for the heavy atoms. 

Probabilistic resolution of  ambiguities in two- and 
three-phase invariants 

Probabilistic formulas have been developed by Fan 
Hai-fu, Han Fu-son, Qian Jin-zi & Yao Jia-xing 
(1984) with the objective of resolving the ambiguities 
in the phase differences (two-phase invariants) that 
arise both in single-isomorphous-replacement experi- 
ments and one-wavelength-anomalous-dispersion 
experiments. In the analyses, it is assumed that the 
heavy-atom structure is known. The probability distri- 
butions are based on the Cochran (1955) distribution 
for a triplet phase invariant in which, for single 
isomorphous replacement, the three phases and mag- 
nitudes refer either to the native or substituted 
macromolecule. This distribution is combined with 
information concerning the phase differences. For- 
mulas are obtained for the probability of the sign of 
the phase differences. In a later article, Fan Hai-fu 
& Gu Yuan-xin (1985) have extended the earlier work 
by introducing the product of the Cochran (1955) 
and Sim (1959) distributions in order to incorporate 
partial structural information. 

In an application with exact data to avian pan- 
creatic polypeptide and its Hg derivative by Yao 
Jia-xing & Fan Hai-fu (1985) to single isomorphous 
replacement in which the replacement atoms have a 
centrosymmetric arrangement, it was shown that the 
correct sign for the difference between the phase for 
the structure and that for the heavy-atom partial 
structure could be found in most instances. The 
method involved sign determination among several 
random starting sets combined with a measure of the 
figure of merit. Depending upon the number of reflec- 
tions included (largest 200-800 differences), sets with 
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the highest figures of merit had correct signs that 
ranged from about 95 to 70% correct. Test calcula- 
tions are also presented for the case that the heavy 
atoms are non-centrosymmetrically placed with use 
of exact isomorphous replacement data for insulin 
and its Pb derivative (Fan Hai-fu, Han Fu-son, Qian 
Jin-zi & Yao Jia-xing, 1984). A test on experimental 
one-wavelength anomalous-dispersion data was 
made on the Hg derivative of avian pancreatic poly- 
peptide (Fan Hai-fu & Gu Yuan-xin, 1985). In the 
calculations performed the signs of 86% of the phase 
differences were correctly determined. 

An investigation of a conditional probability distri- 
bution for triplet phase invariants in single isomor- 
phous replacement that also involves knowledge of 
the structure of the replacement atoms has been car- 
ded out by Klop, Krabbendam & Kroon (1987). The 
conditional probability distribution is formed from 
the joint probability distribution of Hauptman 
(1982a) for triplet phase invariants in single isomor- 
phous replacement, intensity information, and phase 
difference information obtained from the structure- 
factor magnitudes associated with the structure 
formed by the replacement atoms and the structures 
of the isomorphous pair. The phase-difference infor- 
mation concerns the differences of phases from the 
isomorphous pairs as well as differences that include 
those for a member of the isomorphous pair and those 
for the structure of the replacement atoms. The use 
of enantiomorph-sensitive distributions and a statis- 
tical analysis has led to formulas for resolving the 
ambiguity in triplet phase invariants from single 
isomorphous replacement. Comparisons are made 
with the features of the distributions of Fan Hai-fu, 
Han Fu-son, Qian Jin-zi & Yao Jia-xing (1984) and 
Fortier, Moore & Fraser (1985). 

A filtering method for resolving the phase ambiguity 
in single isomorphous replacement and single- 
wavelength anomalous dispersion 

A filtering method for resolving the phase 
ambiguities in single isomorphous replacement (SI R) 
or single-wavelength anomalous dispersion (SAS) has 
been developed by Wang (1985). Several successful 
applications of the methodology are described in 
the latter reference. In the procedure for SIR, for 
example, a map is made with the use of the sum of 
the contributions from two structure factors for each 
reflection, one that contains the correct phase and 
the other an ambiguous alternative that is incorrect. 
Wang (1985) points out that the result can be con- 
sidered as the superposition of two Fourier maps, 
one the correct map and the other a map composed 
from incorrect phases. When the heavy atoms in the 
isomorphous derivative are not in special positions 
or related by a center of symmetry, the Fourier map 
produced by the incorrect phases contains no struc- 

tural information and can be expected to produce 
features of generally lower magnitude than those of 
the correct electron density. These characteristics 
form the basis for the filtering process for extracting 
the correct answer. 

The filtering procedure involves the definition of 
the molecular boundary, raising of the densities 
within the protein region by a constant value along 
with the removal of very weak and negative densities 
and, outside the boundary, the smoothing of the 
density to a constant level. This enhances the electron 
density within the boundary relative to the disordered 
solvent region. The modified region within the bound- 
ary is used as a partial structure for obtaining new 
values for the phases for the calculation of a new 
Fourier map. The process is repeated until conver- 
gence is obtained. Thus, the method is called the 
iterative single isomorphous replacement (ISIR) 
method. A similar analysis is also applicable to single- 
wavelength anomalous-dispersion data and is corre- 
spondingly labeled ISAS. 

An application of maximum entropy 

With a test example based on a protein fragment, 
Bryan & Banner (1987) showed that by use of a 
maximum-entropy calculation with single-isomor- 
phous-replacement data, a significant improvement 
was obtained over a conventional 'best' electron 
density map. The best results were obtained by use 
of both the intensity data sets from the pair ofisomor- 
phous structures as constraints. 

Anomalous dispersion 

Anomalous dispersion is associated with absorption 
processes in atoms. The effect is strongest when the 
incident X-ray wavelength occurs in the vicinity of 
an absorption edge of the constituent anomalous 
scatterers of a substance of interest. In general, the 
experimental objective is to take advantage of the 
much stronger anomalous scattering of heavier atoms. 
The anomalous scattering of the light atoms is often 
negligible. 

The effect of anomalous dispersion is expressible 
in terms of the atomic scattering factor, f, which may 
be defined as 

f = fn+f '+ i f '  (11) 

where fn is the normal or non-anomalous scattering 
factor that is obtained from computations in which 
it is assumed that the frequency of the radiation is 
much larger than the absorption frequencies of the 
subject atoms. The quantities f '  and f" are the real 
and imaginary parts of the correction to f~, represent- 
ing the effects of the absorption processes that lead 
to anomalous dispersion. When f" is not negligible, 
an important consequence is that the intensity 
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measured for an acentric reflection h is, in general, 
different from that for h. 

Bijvoet (1954) recognized that anomalous disper- 
sion could be used to determine the absolute configur- 
ation of a molecule and with colleagues also showed 
that it could be used for phase determination (Peerde- 
man & Bijvoet, 1956). Much progress has been made 
in developing the technique of anomalous dispersion 
for use in phase determination. Its applications have 
usually been made in combination with isomorphous 
replacement but it is now developing into a technique 
that is, at times, applied alone. A book of reviews on 
anomalous dispersion concerning work performed 
during the early and middle 1970's has been published 
(Ramaseshan & Abrahams, 1975) in which, among 
other topics, there are discussions of multiple- 
wavelength experiments and application to macro- 
molecular structure determination. 

A number of developments since the middle 70's 
account for the increasing interest in the anomalous- 
dispersion technique. They concern advances in 
theory, instrumentation and the character of the 
experiments. A system of exact linear simultaneous 
equations facilitates the evaluation of two-phase and 
also three-phase invariants. There has also been good 
progress in evaluating triplet phase invariants by 
probabilistic and additional algebraic means. The 
high intensity and tunability of synchrotron radiation 
sources and the development of area detectors have 
greatly facilitated the collection of data. 

Exact algebraic analysis of multiple-wavelength- 
anomalous-dispersion data 

The unknown magnitudes and phase differences 
that arise in multiple-wavelength-anomalous-disper- 
sion experiments may be expressed, without approxi- 
mation, in terms of linear variables in a system of 
simultaneous equations (Karle, 1980). One kind of 
unknown quantity occurs in the form of intensities 
of scattering for the individual types of atoms present 
as if each type were present in isolation. The quan- 
tities that vary with wavelength, the corrections to 
the atomic scattering factors, occur in the simul- 
taneous equations as coefficients of the unknown 
quantities. Their values are available from tables or 
experimental measurement. 

The existence of the intensities of scattering for 
individual types of anomalous scatterers as unknown 
quantities to be evaluated by use of the simultaneous 
equations provides a useful means for solving for the 
structures of the individual types of anomalous scat- 
terers. The evaluated intensities could be used to 
compute a Patterson function. If the structure is com- 
plicated and not readily amenable to analysis by 
means of a Patterson function, it is still possible to 
consider structure determination by direct methods. 
Once the structure of an anomalous scatterer is 

known, the information provided by the simultaneous 
equations leads directly to the solution of the entire 
structure by providing phase values associated with 
the structure of the native protein. 

A simple result that illustrates the characteristics 
described above concerns the case of a structure com- 
posed of atoms that scatter normally and one type of 
atoms that scatter anomalously. The appropriate 
equation is 

n 2 IF,,,,l ~= IF,.. +,~. FT.,,l ~ 
+/3, FT.,I F~.., c o s  (~';'.,- 9,~.,) 
+'y.IF';.. F'~., sin (~'.h-~p.~.,) (12) 

where 

Og h 

f t ,=  

T .  = 

fo A2 ~- 

~A2 

1 +(f~2/f~.,)[(f~E/f~.h)+2 cos 8,2] (13) 

211 +(f]E/f'~.,) cos 8A2] (14) 

2(f~2/f~.,) sin 8A2 (15) 
¢'t2 -4- -Fn'2 ~,1/2 (16) 

d a 2 - - d a 2 1  

tan -1 (f'~E/f'~2). (17) 

[FAh[ is a known structure-factor magnitude whose 
value is obtained from a measurement of the intensity 
at a particular wavelength, A, for a given reciprocal 
vector, h, F~'h is the magnitude of the corresponding 
structure factor for the non-anomalously scattering 
atoms, IF~..I is the magnitude of the corresponding 
structure factor for the anomalously scattering atoms 
scattering as if there were no anomalous scattering 
and ¢~'.h-¢~.h is the difference between the phases 
associated with F~',h and I F~,, respectively. 
Evidently, the subscript 1 refers to the non- 
anomalously scattering atoms and the subscript 2 
refers to the anomalously scattering ones. 

A system of simultaneous equations can be formed 
from (12) by performing anomalous-dispersion 
experiments at various wavelengths and adding an 
equation for K which differs from the one for h. The 
sign of the last term on the right-hand side of (12) 
becomes minus when h replaces h. The equations 
are linear if the unknown quantities are chosen to 
be I .2 .= . . . . F l . , [ .  IF2 . , ]  . ] F l . , ] [ F 2 . h l  COS (~/~l.h-- ~02.h) a n d  

IF~'.hllF~.hlsin('~[,--~[,). Values for the phase 
differences can be obtained by taking the arctangent 
of the ratio of the fourth and third unknown quantities 
listed above. The system of simultaneous equations 
can be augmented by adding a quadratic equation 
based on the fact that sin 2 X + cos 2 X = 1. 

A completely general system of equations has been 
derived for the case of any number and type of 
anomalous scatterers (Karle, 1980). Precisely the 
same types of unknown quantities occur in the general 
system of equations as occur in (12), individual nor- 
mal intensities of scattering and phase differences. 
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Applications of the linear algebraic equations are 
beginning to be made and will be noted further on. 

Cascarano, Giacovazzo, Peerdeman & Kroon 
(1982) have carried out an analysis to obtain 
expressions for the structure-factor magnitudes for 
identical anomalous scatterers among a majority of 
normal scatterers. Evaluations of such quantities also 
follow from the application of (12). They suggest the 
use of a two-wavelength technique in the vicinity of 
an absorption edge. With the structure-factor magni- 
tudes at .hand in a test application with ferredoxin, 
the authors used direct methods to find the iron atoms. 
Errors were introduced to simulate experimental con- 
ditions. 

Woolfson (1984) has presented a further discussion 
of the case of a single type of anomalous scatterer 
in terms of a two-wavelength experiment in which 
significant anomalous scattering occurs at one 
wavelength but not at the second one. Presumably 
the second wavelength is far from an absorption edge. 
The latter would have the effect of reducingthe  
observed pair of quantities in (12) for h and h to 

= = F "  2 F~] 2 IF,hi 2 F,",hl 2 where ] ,,h is the magnitude 
squared of the structure factor representing the total 
normal scattering for the structure of interest and is 

n 2 n n 
equal to [FT, h[ 2+lv2,~l + 2lFV,hllv~,hl cos (~ , , h -  ~2,~). 

One-wavelength data analysis 

The possibility of using the system of equations 
represented by (12) in a one-wavelength experiment 
has been considered (Karle, 1985b, 1989). The data 
from a one-wavelength experiment generate two 
equations in (12), one for h and one for h. A third 
e q u a t i o n  is b a s e d  on  sinE x + c o s 2 x  = 1. As p o i n t e d  
out, for the case of a structure having non- 
anomalously scattering atoms and one type of 
anomalously scattering atoms, there are four 
unknown quantities in (12) when they are defined in 
a fashion to produce linearity. 

In order to proceed, it is necessary to reduce by at 
least one the number of unknown quantities. This 
may be done by determining the value of F~.h 2 from 
statistical considerations and holding it fixed or deter- 
mining the structure of the anomalous scatterers or 
measuring the data for the unsubstituted structure or 
a combination of the latter two possibilities. Knowl- 
edge of the structure of the anomalous scatterers gives 
;¢alues for the [F~',h[ and ~P~',h and measurement of the 
data for the unsubstituted structure gives values for 
the [F~'h[. With knowledge of the structure of the 
anomalous scatterers, potentially accurate informa- 
tion is obtainable from a one-wavelength experiment 
concerning the values of the desired ~P~',h, the phases 
of the unsubstituted structure (Karle, 1989). If only 
one of F~',h and F~,h is a known quantity, the system 
of equations contains a twofold ambiguity. The selec- 
tion of the appropriate solution has been found to 

be generally achievable by solving the equations with 
the use of a least-squares technique in which the 
process is initiated with statistically reasonable start- 
ing values for the unknown quantities. 

Relative scaling in multiple-wavelength experiments 

In the application of the systems of simultaneous 
equations to anomalous-dispersion data, it is impor- 
tant that the simultaneous equations be properly rela- 
tively scaled. The containment of macromolecular 
crystals in capillaries may add to the difficulties in 
making appropriate absorption corrections. To effect 
appropriate scaling, use of the following relationship 
was suggested (Katie, 1984a): 

IF~, ~-O'5W(IF~hI+IF~I), (18) 

where [F~, is the structure-factor magnitude for the 
crystal of interest in the absence of anomalous scatter- 
ing and 

w - -  :;+z 
f Nn°n 2 iN/an° ) -- 1 /2  

x / j~l f jh+ ,~  [(f ;nhq-f;)2+f~'2 ]~ (19) 

The quantities Nno n and Nano are the number of 
normally scattering atoms and anomalously scattering 
atoms in the unit cell, respectively. Tests have shown 
(Katie, 1984a) that the right-hand side of (18) is 
rather independent of wavelength, even when the 
relative amount of anomalous scattering exceeds that 
normally encountered in macromolecular crystal- 
lography. Relative scaling among various wave- 
lengths can be achieved by rescaling the sums of the 
measured quantities on the right of (18) so that they 
would all agree, for example, with that at the shortest 
wavelength used in the measurements. If the latter is 
short enough to give a negligible correction for 
absorption, the scaling corrects for absorption at all 
the other wavelengths. 

Applications of linear multiple-wavelength theory 

Several multiple-wavelength investigations have 
made use of the exact linear equations (12) or an 
equivalent form. The applications to data have been 
in the nature of experimental tests on known struc- 
tures and investigations of unknown structures. The 
focus of the investigations on macromolecules has 
been mostly on structures that have relatively weak 
anomalous scatterers as inherent parts of the struc- 
ture. In one case a relatively weak anomalous scatterer 
was added. None of the stronger anomalous scatterers 
was present in the studies. In the circumstances, care- 
ful experimentation was employed involving such 
equipment as tunable high-intensity synchrotron 
sources and area detectors. 
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A test experiment has been performed on lamprey 
hemoglobin (Hendrickson, Smith, Phizackerley & 
Merritt, 1988). Investigations on new structures by 
Hendrickson and colleagues have concerned ferre- 
doxin from Clostridium acidi-urici (Murthy, Hen- 
drickson, Orme-Johnson, Merritt & Phizackerley, 
1988) and streptavidin from Streptomyces avidinii 
(Hendrickson, P/ihler, Smith, Satow, Merritt & 
Phizackerley, 1989). For the lamprey hemoglobin 
data set that was 87% complete out to 3/~ spacings, 
the average of the magnitudes of the discrepancies 
between the phases from multiple-wavelength 
anomalous dispersion and those from the least- 
squares-refined atomic model was 50.5 ° . The analysis 
of ferredoxin was limited because of weak data to 
5/~ resolution, but the phase values obtained from 
the data were comparable to those of a previously 
determined related ferredoxin. For streptavidin, 
three-wavelength data measured at the Photon Fac- 
tory from the selenobiotinyl complex produced a fine 
map at 3.3 A resolution. An atomic model fitted to 
this map has been refined to R = 0.17 with 2/~ data 
collected with Cu Ka radiation (P/ihler, Hendrickson 
& Satow, 1989). Hendrickson anticipates the possibil- 
ity of developing general techniques for the applica- 
tion of multiple-wavelength anomalous dispersion in 
which methionine is replaced by selenomethionine in 
proteins and bromination is applied to nucleic acids. 

An application of the multiple-wavelength- 
anomalous-dispersion technique, with the use of (12), 
to the structure determination of cucumber basic pro- 
tein has been reported by several collaborative groups 
(Guss, Merritt, Phizackerley, Hedman, Murata, 
Hodgson & Freeman, 1988). This is another example 
of a study in which the anomalous effects from the 
anomalous scatterer, an inherent Cu atom, were rela- 
tively weak. Full advantage was taken of current 
experimental techniques that involve high-intensity 
tunable X-ray sources and area detectors for data 
collection. 

The use of L edges in anomalous-dispersion experiments 

Templeton, Templeton, Phillips & Hodgson (1980) 
presented a study in which they emphasized the value 
of making use of L absorption edges in anomalous- 
dispersion experiments. They found, for example, 
that near the L 3 edge of caesium f '  varied between 
-26.7 and -13.9 and f "  between 4.0 and 16.1 elec- 
trons in a wavelength interval of 0.008/~. They also 
found that the experimental measurements for f '  and 
f" contain details that do not appear in the smoother 
theoretical curves, owing to certain approximations 
in the calculations. This suggests the virtue of making 
experimental determinations o f f '  and f" in the vicin- 
ity of an absorption edge when it is considered impor- 
tant to take advantage of their detailed variations. 
Theoretical values should be sufficiently accurate for 

applications as the wavelength departs from the 
absorption edge. Since values for f '  and f "  are tabu- 
lated only for Ka radiation from various specific 
sources, the use of most edges, L or otherwise, 
would require their determination by experimental 
means. 

In an investigation concerned with the application 
of L edges in multiple-wavelength-anomalous-disper- 
sion experiments, Chapuis, Templeton & Templeton 
(1985) applied the technique to crystals of 
NaHo(edta).8H20 and NaSm(edta).8H20. With the 
use of the exact linear algebra in a form equivalent 
to (12), both structure determinations were successful. 
Especially high accuracy for the phases (average error 
of 5 ° ) was obtained from synchrotron radiation. 

In order to facilitate multiwavelength experiments, 
an apparatus for making simultaneous measurements 
of anomalous-dispersion data over a range of 
wavelengths has been described by Arndt, Green- 
hough, Helliwell, Howard, Rule & Thompson (1982). 

Role of isomorphous replacement in the algebraic 
equations 

It may occur that, in isomorphous replacement, the 
native substance scatters essentially normally and 
anomalous dispersion arises from a single type of 
anomalous scatterer in the heavy-atom derivative. In 
that case the system of equations arising from (12) 
would apply with the added advantage that intensity 
data measured for the native substance would provide 
values for t he  IF~,h 2 that occur in (12), thereby 
decreasing the number of unknown quantities to be 
evaluated. If the positions of the heavy atoms have 
been determined, the only unknown quantity remain- 
ing in the equations for IFxhl 2 a n d  FAK 2 is ~',h, which 
may then be readily evaluated. 

In case the isomorphous structures each contain 
significant anomalous scatterers, it would be 
necessary to make more detailed use of (12) by 
appropriately including the effects of the various 
anomalous scatterers. If there is more than one type 
of anomalous scatterer in any structure, the general 
form of the theory mentioned earlier (Karle, 1980) 
would come into consideration. 

Triplet phase invariants from anomalous-dispersion 
data: probabilistic results 

One objective of formulas for triplet phase 
invariants based on anomalous-dispersion data is to 
provide suitable mathematics for proceeding with 
phase determination when the structure of the 
anomalous scatterers is not known and, presumably, 
does not yield to Patterson or direct-methods analysis. 

A formula for the sine of an average triplet phase 
invariant has been derived by Heinerman, Krabben- 
dam, Kroon & Spek (1978) from probabilistic 
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considerations. The result is 

sin ffhk = (1~12-  I~Kd =) 
tt 1 x {4Zhk[~( "rhklZ+ "r~ z) - 7"~k12]} -'/2 (20) 

where ffhk = 0"5(q~hk--q~K~), ~0nk is the phase of ~'hk = 
FhFkFr,+r, and ~'~k is the contribution of the imaginary 
part of ~'hk- It is defined approximately for the case 
of two identical anomalous scatterers in the structure 
by 

~'~,k~-- 2f"[f(h)f(k) +f(h) f (h  + k,) + f (k ) f (h  + k)] 

x[1 + g(IE,,12+lE,,12+lEr,+r,12-3)], (21) 

wheref(h) is the total real part of the atomic scattering 
factor, i.e. the sum of the non-anomalous contribution 
and the real part of the anomalous contribution, f "  
is the imaginary part of the anomalous contribution, 

K = / 2 0 " 2 / ( 0 " 2  - 0"4). (22) 

Z is the atomic number of the anomalously scattering 
atoms, 

or,,= ~ Z 7 (23) 
j = l  

and Zj is the atomic number of the jth atom in a unit 
cell containing N atoms. The E are normalized struc- 
ture factors. 

Test calculations were performed with (20) and 
gave encouraging results for the accuracy of the 
invariants. 'rhe problem of choosing between ~0 and 
7r-q~ was handled by selecting the alternative that 
was closer to zero. 

Hauptman (1982b) derived the conditional proba- 
bility distribution for triplet phase invariants, given 
the values of IEHI, IEKI, lull, IE•l, IE IE A, with 
the use of the joint probability distribution of the 
corresponding six normalized structure factors, where 
H + K + L = 0. Giacovazzo (1983) published a similar 
theory. The result obtained by Hauptman is 

Pj(Oj)=(1/Kj)exp[Ajcos(g2j-%)] (24) 

where O~ represents the value of a triplet phase 
invariant, and j ranges over eight values, each rep- 
resenting one of the eight triplet phase invariants that 
can be composed from the six E's  listed above. The 
definitions of Aj, Kj and % are fairly complex and 
so the reader is referred to the publication for details. 
Since the K/s  and A/s  are positive, the maximum of 
the right-hand side of (24) occurs when g2j = %. Thus, 
% is an estimate of Oj and, the larger the value of 
Aj, the more reliable it is. The estimate is unique in 
the entire interval (-Tr,+rr)  and is explicitly 
expressed in terms of the complex scattering factors, 
fro, fjK, fit_, presumed to be known, and the observed 
magnitudes IEHI, IE,,I, lull, IE, l, IE, l, led. No 
knowledge of the positions of the anomalous scat- 
terers is required, nor do the anomalous scatterers 
need to be identical. It is necessary, however, to know 

the types of anomalous scatterers, the number of 
atoms in each type and the occupancy of their sites. 

A test calculation was performed on a PtC142- 
derivative of cytochrome c550. The atoms Pt, C1, Fe 
and S were treated as anomalous scatterers at the 
wavelength of Cu Ka radiation. Test groups of triplet 
invariants ranged from 100 to 60 000 with correspond- 
ing average values for A ranging from 6.01 to 2-15. 
The average magnitude of the error for calculations 
based on exact data ranged from 28 to 40 ° . 

Fortier, Fraser & Moore (1986) have analyzed 
sources of error in probabilistic formulas for the 
evaluation of triplet phase invariants from 
anomalous-dispersion data. They have also noted the 
enhanced accuracy that accrues from making use of 
information concerning the structure of the 
anomalous scatterers and indicate how this may be 
effected in the use of the conditional joint probability 
distributions. 

A probabilistic approach to the development of 
formulas for evaluating triplet phase invariants com- 
posed of a mixture of phases defined for anomalous- 
dispersion data at two different wavelengths or for 
anomalous-dispersion and isomorphous-replacement 
data has been presented by Pontenagel, Krabbendam, 
Peerdeman & Kroon (1983). 

Bryan (1988) has discussed the derivation of proba- 
bility distributions for isomorphous replacement and 
anomalous dispersion by use of a maximum-entropy 
formalism. Use was made of two density maps, one 
representing a native structure and the other rep- 
resenting heavy atoms or anomalous scatterers. A 
series expansion of the total Shannon-Jaynes entropy 
of both maps gave either the single-isomorphous- 
replacement or anomalous-dispersion probability 
distributions. For isomorphous replacement, for 
example, the assumption of known heavy-atom posi- 
tions was not made. The total entropy of both maps 
was maximized subject to the constraints imposed by 
the intensities of both the native and derivative struc- 
tures. The single-anomalous-scattering result was 
obtained similarly. 

Triplet phase invariants from anomalous-dispersion 
data: algebraic results 

In a manner similar to that used for isomorphous 
replacement, algebraic analyses were performed to 
evaluate triplet phase invariants for anomalous- 
dispersion data. Evaluations were based on physical 
and mathematical criteria and some probabilistic con- 
siderations that led to rules for evaluating triplet 
phase invariants having particular values (Karle, 
1984b, c). A general rule was developed that included 
the results from both isomorphous replacement and 
anomalous dispersion and a variety of combinations 
that could lead to evaluations of triplet phase 
invariants at many points between -~r and 7r (Karle, 
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1984d). A more detailed combination of isomorphous 
replacement and anomalous dispersion led to results 
of potentially high accuracy (Karle, 1985a). An alge- 
braic analysis that depends upon knowledge of the 
structure of the anomalous scatterers, or heavy atoms 
in isomorphous replacement, led to the possibility of 
determining values for triplet phase invariants any- 
where between - z t  and 7r with high accuracy (Karle, 
1986). It has also been shown how triplet phase 
invariants for anomalous-dispersion data can be 
readily formed and evaluated from the two-phase 
invariants that arise in the exact linear algebraic 
analysis (Karle, 1984e). If measurements of intensity 
data are made at several wavelengths, the additional 
information has the potential for increasing the relia- 
bility of the estimates of the triplet phase invariants. 

By starting with the structure-factor equation for 
anomalous dispersion 

Fah---- F~ + F~,h (25) 

we can write 

Fah-  Fa*K-- F~, + F~,h- F ~ * -  F ~  = F ~ h -  F ~  (26) 

where Fah is the structure factor for the total scattering 
from all the atoms including the anomalously scatter- 
ing ones, F~ is the structure factor that would obtain 
if all atoms scattered normally and F~h is the structure 
factor that represents the scattering from only the 
anomalous corrections to the atomic scattering 
factors. 

It has been shown (Karle, 1984b) that 

P 

F~h-- F ~  = 2i ~ ( f ~ / f ~ . h )  sin 8~,~F~,h (27) 
m = l  

where 

fA,,, (f~2 ,,2 ,/2 " = +faro) (28) 

3a= = tan -~ (f~(,,,/f'a,,,). (29) 

The scattering factor f~, ,  is the normal part of the 
scattering factor for the ruth type of atom and FT,.h 
is the normal structure factor for the ruth type of 
atom in a structure containing p types of atoms. For 
those types that make only an insignificant contribu- 
tion to the anomalous scattering, the corresponding 
f~,, could be set equal to zero. 

To illustrate the use of (26) and (27), it is now 
assumed that only one type of atom scatters 
anomalously and that the remainder do not do so to 
a significant extent. By combining (26) and (27), one 
may write 

• a 3 1,1 r~ t l  n n n --81(f xq/ f  q, h f  q, k f  q,f~+~) s in  3 8,q Fq, hFq, kFq,~+ k 

= (  F ~ h - [ F , ~ ) (  F a k - I F ~ )  

x (tF,(K+;,I- IF~(,+k,I) exp ( iq~) ,  (30) 

where q ~  represents the average of eight triplet phase 
invariants formed from ~ah or -~a~ ,  ~a~ or - ~ a ~ ,  

and ~a(h+k) or --~a(K+~). The basis for taking the 
average is that for the largest values of I lFad-  {F,K[I, 
the phase of FAh, ¢*h, will differ little in value from 
the phase of F ' s ,  -~aK. The structure associated with 
only those atoms that scatter anomalously to a sig- 
nificant extent is usually quite simple so that if the 
tFq.hFq.kFq,(r,+r,)], where q labels the type of atom that 
scatters anomalously, are within their larger magni- 
tude range, the associated triplet phase invariants are 
equal to zero, to good approximation. This accounts 
for the absence of an expression for a triplet phase 
invariant from the left-hand side of (30). Evidently 
(30) will be most accurate when the magnitude of the 
triple product of F on the left-hand side of (30) and 
the differences on the right-hand side are among the 
largest. Relation (30) may be compared with (10) for 
isomorphous replacement. 

The quantity on the left-hand side of (30) is a pure 
imaginary. This implies that, to good approximation, 
~hk has a value of either 7r/2 or - z : / 2  and leads to 
the following interpretation when the triple product 
on the right-hand side of (30) has large differences 
(Karle, 1984b): 

Rule, Raooa: I f  the sign of the product of the 
magnitude differences, (IEan]--IFAr, I)(IFakI--IFar, I)X 
(IFa(~+~)I- IG(h+k~l), is the same as the sign of sin 3aq 
(or, equivalently, the sign of f'~q), the value of the 
average invariant, @hk, is close to --~r/2 and when the 
signs are opposite, the value is close to ~/2. 

This estimate is, in effect, assigned to all eight triplet 
phase invariants from which the average is formed. 
Alternatively, the estimate may be assigned only to 
those triplet phase invariants associated with the 
larger products of structure-factor magnitudes 
occurring among the eight possibilities. This would 
be expected to increase the accuracy somewhat, but 
would appear to complicate seriously the practical 
utility of the result. It would seem that the use of 
average triplet invariants with their redundant inter- 
relationships in phase determination would offer a 
great simplification over the use of the larger number 
of individual invariants. Data accuracy may also not 
justify the use of any but average triplet phase 
invariants. 

Similar to the circumstances with Riso, it is pos- 
sible, simply by visual inspection of the magnitude 
differences in Rano,1, tO evaluate triplet phase 
invariants when there is one predominant type of 
anomalous scatterer. It is not necessary to know the 
positions or occupancies of the anomalous scatterers. 
The presence of more than one type of anomalous 
scatterer brings in a more complex form for (27) 
whose calculation requires knowledge of the types, 
positions and occupancies of the anomalous scat- 
terers. 
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Additional algebraic formulas that include 
anomalous dispersion and isomorphous replacement 
were also derived (Karle, 1985a). In the test calcula- 
tions made with these formulas on cytochrome 
c550.PtCl 2-, the average errors were quite small, 
ranging from 6 to about 30 °. Heavy-atom information 
also enhances the accuracy of the triplet phase 
invariants (Fortier, Fraser & Moore, 1986; Karle, 
1986). 

Triplet phase invariants from exact linear equations for 
anomalous-dispersion data 

Triplet phase invariants can also be evaluated from 
use of the exact linear algebraic equations (Karle, 
1984a). As described in connection with (12), sol- 
ution of these equations gives values for numerous 

I1 lq ~t)l,h--~t;~2, h. It is possible to form sums of suitable 
phase differences, such as 

n n n n n r l  

(Pl,h + ¢Pl,k + (~t) 1,(K-t-~,.) - -  (D2.h- ~2.k ( P 2 , ( h + k )  = Ahk,  

(31) 

where Ahk would be known from the evaluation of 
the three individual phase differences in (31). The 
first set of three phases comprises a triplet phase 
invariant for the structure consisting of non- 
anomalously scattering atoms and the second for the 
anomalously scattering atoms. Because the structures 
of the predominant anomalously scattering atoms in 
macromolecules are generally simple, the triplet 

hase invariants associated with the larger products 
~,hF~.kF~.(K+~)] for such structures may be quite 

reliably set equal to zero. Under these circumstances, 
we get 

rl  rl I1 

¢Pl.h -t- ¢Pl,k q- ~ I.(K+~.) --  Ahk, (32) 

a result which illustrates the evaluation of triplet 
phase invariants for the structure of the normally 
scattering atoms, e.g. an unsubstituted native protein. 
A further discussion of this formula and some others 
that have been presented in this paper may be found 
in a review (Karle, 1987). 

It may be noted that probability distributions may 
be readily associated with the various algebraic for- 
mulas for evaluating triplet phase invariants. If the 
values for the triplet phase invariants are considered 
to be expected values, we may readily employ the 
central limit theorem. This also entails an evaluation 
of the variance, presenting an opportunity to intro- 
duce a measure of the effect of errors in the data as 
well as other sources of uncertainty. 

Refinement 

Some of the techniques for the refinement of macro- 
molecular structures are based on formulas that had 
their origin in the development of direct methods for 
small structures. The techniques concern use of the 

tangent formula (Karle & Hauptman, 1956; Karle, 
1968), the equation of Sayre (1952, 1972, 1974) and 
the higher-order determinants (Tsoucaris, 1970, 1980; 
Katie, 1971) associated with the determinantal 
inequalities that arise from the non-negativity of the 
electron density distributions in crystals (Karle & 
Hauptman, 1950). These techniques have not 
achieved widespread use up to this time, presumably 
because there are alternative techniques that inves- 
tigators have found to be preferable. 

Tangent formula 

The tangent formula is given in terms ofthe normal- 
ized structure factors, [E ], and their associated phases, 
¢, by 

tan ~Oh = ( ~  IEkEh_k sin (~Ok+ ~Oh-k)) 

]' 
x [EkEh-k COS (¢k+ ~0h-k) (33) 

With small molecules, the tangent formula has been 
used for direct phase determination, phase extension 
and phase refinement. Phase extension and 
refinement has also been carried out with 
macromolecules with the use of (33). Applications 
have been made to cytochrome c by Weinzierl, Eisen- 
berg & Dickerson (1969), to carboxypeptidase A by 
Reeke & Lipscomb (1969) and to sperm whale 
myoglobin by Coulter (1971) with rather limited suc- 
cess. Some improvement in the results is obtained 
from use of the tangent formula when information 
from isomorphous-replacement or anomalous- 
dispersion techniques is closely involved in the analy- 
sis. Investigations including the latter have been per- 
formed, for example, on carp muscle calcium-binding 
protein (Hendrickson & Karle, 1973) and are further 
described in a review article by Hendrickson (1973). 

An investigation of the structure of avian pancreatic 
polypeptide, a small (36-residue) globular protein 
hormone, was carried out by Blundell, Pitts, Tickle, 
Wood & Wu (1981). In this study, phases for data at 
2.1/~, resolution were calculated from a combination 
of single isomorphous replacement with anomalous 
dispersion. These phase values were used with (33), 
modified by Hull & Irwin (1978) to give a reweightin~g 
of individual terms to extend phase values to 1.4 A 
resolution. The resulting electron density map was of 
high quality and led readily to a solution of the 
structure. 

A modification of the tangent formula described 
by Olthof, Sint & Schenk (1979) is based on an 
estimate of the expected values of the magnitudes of 
the triplet phase invariants occurring in the tangent 
formula as a function of their associated structure- 
factor magnitudes. Thus, the triplet phase invariants 
are biased toward their expected values. The signs of 
the expected values may be obtained from knowledge 
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of the approximate values of the phases. Some calcu- 
lations with this modification of the tangent formula 
have been applied by Olthof & Schenk (1982) to 
phase extension and refinement of metmyoglobin. 

Sayre formula 

A least-squares phase refinement has been presen- 
ted by Sayre (1972) which is based on a formula 
published earlier (Sayre, 1952). The function S(~)  
is minimized with respect to the phases represented 
collectively by ~, where 

I (34) 

Tests have been made on the protein rubredoxin by 
Sayre (1974) and the method has been applied to 
insulin by Cutfield et al. (1975). Previous to the phase 
refinement, heavy-atom phases were extended from 
2.5 and 1.9 A resolution, respectively, to 1.5/~ resol- 
ution in both applications. Maps computed from the 
refined phases at 1.5/~ were readily interpretable in 
most regions. 

Determinants 

The non-negativity of the electron density in a 
crystal was expressed in terms of non-negativity of 
an infinite set of determinants of increasing order 
whose elements are the structure factors (Karle & 
Hauptman, 1950). This result was a development of 
the early work of Toeplitz (1911) on non-negative 
Fourier series. It was shown by Tsoucaris (1970) for 
these determinants that the values of the phases of 
the elements in the last row and column are most 
probably those that maximize the value of a deter- 
minant when the values of the elements in the remain- 
der of the determinant are known. It has been thought 
that the maximum-determinant rule is more general 
and would apply to the complete set of phase values 
for all the elements in a determinant, although this 
has not been proved. Some supporting theoretical 
evidence has come from the work of Heinerman, 
Krabbendam & Kroon (1979), Heinerman, Kroon & 
Krabbendam (1979) and analyses by Karle (1978) 
and by Tsoucaris (1980). Additional indications have 
come from computations of Taylor, Woolfson & Main 
(1978). 

Another approach to the use of the determinants 
of various orders is in the context of the refinement 
of phases. This could be done by making use of the 
definition of the value of a single structure factor in 
terms of the values of the remaining structure factors 
in a determinant. The method for doing this with 
respect to determinants of any order has been illus- 

trated (Karle & Hauptman, 1950). It was suggested 
on this basis (Karle, 1971) that an iterative phase 
refinement could be carried out with the use of deter- 
minants of various orders. The phases were explicitly 
defined in terms of a generalized tangent formula 
based on determinants of various orders including 
the high-order ones. It was shown that the tangent 
formula (33) derives from the third-order deter- 
minant. Efforts have been made to make use of the 
higher-order determinants for phase extension and 
refinement of macromolecules. A test application has 
been made by de Rango, Mauguen, Tsoucaris, Dod- 
son, Dodson & Taylor (1985) on experimental data 
from insulin in which phase extension was applied 
to data at 1-9 A resolution from isomorphous replace- 
ment to obtain phase values at 1.5 A resolution. In 
five cycles of refinement on data that were extended 
from 2390 reference data having E > 1.0 at 1.9 A 
resolution to 5050 data having ]E > 1.0 at 1.5 A resol- 
ution, the average of the magnitudes of the errors in 
the phases decreased from 48.9 to 38.3 ° . Comparable 
improvements were obtained in a variety of samp- 
lings. 

Another application of the determinants arising 
from the non-negativity of the electron density distri- 
bution in a crystal is the phasing of low-resolution 
data from yeast initiator tRNA by Podjarny, Schevitz 
& Sigler (1981). The starting phase set consisted of 
107 reflections in the resolution range 32-14 A which 
had been phased by multiple isomorphous replace- 
ment. This starting set was used with the determinants 
to phase 28 strong low-resolution (100-19 A) struc- 
ture factors that had not been phased with multiple 
isomorphous replacement. The authors report that 
the extension improved the electron density map, 
permitting the establishment of a well defined 
molecular boundary and providing the basis for a 
successful structure determination to 4.0A resol- 
ution. The accuracy of the phases determined by use 
of the determinants compared favorably with that of 
the starting set. 

It is possible that lower-order determinants may be 
useable for phase refinement in the form of the 
tangent formulas that are based on the determinants 
(Karle, 1971). Such tangent formulas are generally to 
be used in their determinantal form, but the tangent 
formula based on the fourth-order determinant con- 
tains few enough terms to permit them to be readily 
written explicitly. This is done here. If, in obtaining 
the result from the fourth-order determinant, quasi- 
normalized structure factors, ~, are replaced by 
normalized ones, E, and a weighting factor for each 
term which emphasizes the importance of large I EI 
values is omitted, we obtain 

tan q~t = [Im (h)--(nhkEo00)-' Im (q,)] 

x[Re(h)--(nbkEooo) -~ Re (qt)] -~ (35) 
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where 

tl = ~ E h E l - h  (36) 
h 

q, = E E,-h Z Ek Eh-k (3 7) 
h k 

and nhk is the number of terms for the sum over k 
for a given h. Equations (35), (36) and (37) may be 
compared with equations (3), (4), (5) and (6) of 
Debaerdemaeker, Tate & Woolfson (1988) (DTW). 
The sum terms are the same, but the coefficients are 
differently defined and somewhat difficult to compare. 
The tangent formula of DTW was derived from the 
introduction of the condition that the resulting phases 
tend towards satisfying the Sayre equation. Woolfson 
& Yao Jia-xing (1988) have used the tangent formula 
of DTW to extend 129 reflections for a small protein, 
avian pancreatic polypeptide, to 1371 additional ones. 
Random values were given to the 1371 new phases 
followed by phase refinement. In 20 trials, 11 gave 
mean phase errors less than 34 ° for all 1500 reflections. 

Because of the increasing restrictiveness of the 
determinants as their order increases, it may be 
worthwhile to consider moderately higher-order 
determinantal tangent formulas (Karle, 1971) as well 
as very high-order ones as possible sources for phase 
refinement and extension. As noted, the determinan- 
tal tangent formulas are readily computed in that 
form. 

Molecular replacement 

Molecular-replacement techniques have served 
as a means of refinement for a number of 
macromolecular structures. The techniques make use 
of the occurrence of a structural unit in more than 
one crystallographic environment. An important 
example is the use of non-crystallographic symmetry. 
Another is the use of a molecular structure that occurs 
in more than one crystal form. Techniques have been 
developed for applications in both direct and 
reciprocal space. 

It is apparent that the placement in space of similar 
structural units needs to be properly described. For 
this purpose, appropriate rotation matrices and trans- 
lation vectors must be determined. In this, the 
Patterson function plays a central role. Rotational 
parameters are usually readily found. Translational 
parameters present greater difficulties. 

The techniques have been generally used with, at 
least, single isomorphous replacement, although 
occasionally homologous structures have been used. 
The heavy-atom positions obtained from the heavy- 
atom isomorphous derivative facilitate the location 
of the molecular symmetry axes and the isomorphy 
helps in defining the molecular boundaries. The 
heavy-atom derivative also facilitates the establish- 
ment of an enantiomorph. 

The earliest work on non-crystallographic sym- 
metry was carried out by Rossmann & Blow (1962) 
in which they investigated the rotational relationship 
between molecules. The determination of transla- 
tional vectors was investigated by Rossmann, Blow, 
Harding & Coller (1964). Theoretical and practical 
aspects of the molecular replacement technique as 
well as a description of many applications have been 
presented in an extensive review article by Argos & 
Rossmann (1980) and a further discussion of this 
subject has been given by Rossmann (1982). 

Investigations of viral structure have benefited 
particularly by the use of non-crystallographic sym- 
metry because of its extensive occurrence in virus 
structures. 

The potential to solve a virus structure by sole use 
of non-crystallographic symmetry may possibly be 
realized at some future time. Rossmann (1982, p. 171 ) 
suggests the 'possibility for experimentation, such as 
perhaps ab initio determination of phases using a 
noncentric distribution of molecular envelopes filled 
with uniform density as a starting structure. Isomor- 
phous replacement would then become superfluous 
in the structure determination of viruses where there 
are numerous noncrystallographic asymmetric units 
per crystallographic asymmetric unit.' 

Restrained refinement 

Techniques for phase refinement based on formulas 
arising from direct methods for small structures have 
had little impact on the practice of macromolecular 
crystallography. In contrast, the structure-refinement 
method known as restrained least-squares refinement, 
developed for application to macromolecules, has 
provided accurate coordinate refinements that 
approach those for small molecules in several in- 
stances. It was introduced by Konnert, Hendrickson 
& Karle (1975) and developed further by Sussman, 
Holbrook, Church and Kim (1977) and Hendrickson 
& Konnert (1979). An additional development in 
restrained refinement has involved the inclusion of 
molecular mechanics and dynamics to facilitate con- 
vergence (Briinger, Kuriyan & Karplus, 1987). A com- 
puter program, X-PLOR, includes this development. 

Some observations 

For the most part, this paper has been concerned with 
some of the more recent theoretical and practical 
developments in the techniques of isomorphous 
replacement and anomalous dispersion. The latter 
heavy-atom techniques have served well since the 
1950's in the remarkable accomplishments of macro- 
molecular crystallography. A variety of developments 
have been discussed in this paper and several have 
already proven their value. Optimal use of the 



JEROME KARLE 779 

individual techniques will generally occur in combi- 
nation with others. We consider here some of the 
ways that the newer developments may play a role 
in future analyses. 

Most of the mathematical studies have concerned 
two-phase and three-phase (triplet-phase) invariants. 
Evidently, in evaluating their applicability, their 
characteristics are a prime consideration. An inspec- 
tion of (10) and (30) for isomorphous replacement 
and anomalous dispersion, respectively, shows that 
the exponential function of the triplet phase 
invafiants for the heavy-atom structure (or anomalous 
scatterers) on the left-hand side of the equations 
(when not set equal to zero) may be moved to the 
fight-hand side of the argument of the exponential. 
This shows that the same values as are assigned to 
the triplet phase invariants by Rule Riso and Rule 
Rano.~ can also be assigned to the sum of three-phase 
differences. The latter point has also been noted by 
Yang, Xu, Furey & Wang (1984) and Xu, Yang, 
Furey, Sax, Rose & Wang (1984). This is a clear 
example of the ambiguousness associated with triplet 
phase invariants and the fact that the most internally 
consistent set of phases may not be the correct one. 
These are properties that are well known to workers 
in the crystallography of small structures where triplet 
phase invariants play a key role in the application of 
the direct-methods procedures (e.g. Karle, 1961; 
Karle & Karle, 1964). In fact, a key problem in the 
application of direct methods to small structures is 
the overcoming of the ambiguities. Another type of 
ambiguity that may occur for small structures leads 
to a Fourier map with a single large peak unrelated 
to the position of any atom in the structure. This can 
arise when only essentially equal non-hydrogen atoms 
are present and is clearly unrelated to the presence 
of a heavy atom. Such a calculation could be quite 
misleading in applications to isomorphous replace- 
ment by implying a false location for a heavy atom. 
In small-structure applications, chemical knowledge 
plays a significant role in the recognition of the correct 
structure among a number of ambiguous alternatives. 
The generally low resolution of diffraction data for 
macromolecular structure limits the usefulness of 
chemical knowledge in resolving the ambiguities of 
triplet phase invariants. These various problems 
which would be further exacerbated by errors in the 
data suggest that the use of triplet phase invariants 
for ab initio phase determination, whether their evalu- 
ation comes from probabilistic or algebraic analyses, 
may not be the method of choice. 

There are alternative approaches based on the two- 
phase invariants that obviate the ambiguity problem. 
In this connection, it is worthwhile to determine 
initially the heavy-atom positions. This may be 
achieved in a number of ways from use of isomor- 
phous-replacement or anomalous-dispersion data, 
e.g. by use of difference Patterson maps, the determi- 

nation of the intensity of scattering appropriate to an 
isolated structure of anomalous scatterers by use of 
anomalous dispersion followed by the calculation of 
a Patterson map or the application of direct methods, 
or the use of non-crystallographic symmetry when 
available. With information concerning heavy-atom 
positions and occupancy, a number of algebraic 
analyses become avaliable for phase evaluation from 
two-phase invariants without ambiguity. 

In extreme cases in which only single-isomorphous- 
replacement or one-wavelength-anomalous-disper- 
sion data are available, it is still possible to proceed 
since it is possible to obtain a number of phase values 
from simple algebraic formulas, e.g. (7) and (8), which 
can then be refined and extended by filtering, perhaps 
by use of probabilistic formulas for resolving 
ambiguities, by use of non-crystallographic symmetry 
when suitable circumstances prevail or, perhaps, by 
use of higher-order determinantal tangent formulas, 
by use of maximum entropy or by use of triplet phase 
invariants. Phase extension and refinement may be a 
useful application of triplet phase invariants. 

There is one circumstance in which the use of triplet 
phase invariants may be the method of choice. This 
would occur in single isomorphous replacement when 
it may not be possible to locate the heavy atoms and 
anomalous-dispersion experiments are not accessible. 
Such a circumstance does not appear to be a 
frequently occurring one. 

When it is difficult to make isomorphous heavy- 
atom derivatives but there may be inherent anomalous 
scatterers in a macromolecule, the techniques of 
multiple-wavelength anomalous dispersion or single- 
wavelength anomalous dispersion combined with 
filtering can play a valuable role in structure determi- 
nation. It is also worthwhile to consider the use of 
heavy-atom derivatives even though they are not 
isomorphous since anomalous-dispersion techniques 
are available. Recombinant DNA procedures may 
provide a method for obtaining appropriate deriva- 
tives in addition to the more common ways of produc- 
ing them. We note that the new applications of the 
linear algebraic theory for multiple-wavelength- 
anomalous-dispersion data have been confined to 
structures with anomalous scatterers of modest 
power. This bodes well for future applications with 
stronger anomalous scatterers. 

The great potential complexity in the analysis of 
virus structures has been overcome in several in- 
stances by the occurrence and use of non-crystal- 
lographic symmetry. The latter technique has greatly 
facilitated the determination of such structures. 

Analytical techniques continue to be developed 
and the extent of their usage will depend upon a 
number of the usual considerations such as applica- 
bility, capability, accuracy and convenience. What- 
ever the ultimate fate of the current mathematical and 
procedural techniques, there is no doubt that 
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macromolecular crystallography will continue to 
make extensive fundamental and practical contribu- 
tions to molecular biology and medicine. Some of its 
broad manifestations for the public good will be 
recognizable from medical advances, the facilitation 
of the design of new and valuable pharmaceuticals, 
and the production of modified macromolecules that 
are destined to play an important role in a variety of 
industrial applications. 
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Abstract 

The procedure described in the first two papers of 
this series [Giacovazzo (1983). Acta Cryst. A39, 685- 
692; Camalli, Giacovazzo & Spagna (1985). Acta 
Cryst. A41, 605-613] for recovering from a partial 
crystal structure the complete one has been recon- 
sidered. Several modifications have been introduced 
which make the procedure more efficient. Further- 
more, a new method is described which is able to 
combine prior information on a located fragment with 
the second representation formula P10. Experimental 

0108-7673/89/110781-06503.00 

tests show that very small fragments are sufficient to 
recover the complete crystal structure. 

Symbols and abbreviations 

Throughout the paper a number of symbols will find 
frequent application. For the sake of simplicity they 
are here listed together. 

f (h) :  atomic scattering factor. The thermal factor is 
included; anomalous dispersion is not considered. 
N: number of atoms in the unit cell. 
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